Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Edward R. T. Tiekink,* James L. Wardell* and William B. Welte

Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail:
edward.tiekink@utsa.edu, che415@abdn.ac.uk, che415@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.021$
$w R$ factor $=0.057$
Data-to-parameter ratio $=23.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Dichloro(N, N^{\prime}-diethyldithiocarbamato- $\kappa^{2} S, S^{\prime}$)-(4-methylpentan-2-onato- $\kappa^{2} C^{4}, O$)tin(IV)

 octahedrally coordinated Sn center within a $\mathrm{CCl}_{2} \mathrm{OS}_{2}$ donor set defined by chelating dithiocarbamate and 4-methylpentan-2-onate ligands and cis- Cl atoms. The crystal structure comprises layers of molecules interconnected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.
Comment

Organotin dithiocarbamate compounds related to the title compound, (I), continue to attract interest owing to their utility as single-source precursors for Chemical Vapor Deposition (CVD) of SnS (e.g., Menezes et al., 2004), as putative pharmaceuticals (e.g. Donoghue et al., 1993), and their structural diversity (Tiekink, 1992). The Sn atom in (I) (Fig. 1) displays a distorted octahedral geometry defined by two S atoms, derived from an asymmetrically chelating dithiocarbamate ligand, C - and O -donor atoms from a chelating 4-methylpentan-2-onate ligand and two terminal and cis- Cl atoms. The disparity in the $\mathrm{Sn}-\mathrm{S}$ bond distances (Table 1) is reflected in both the magnitude of the $\mathrm{C}-\mathrm{S}$ distances, i.e. long $\mathrm{Sn}-\mathrm{S} 2$ is associated with short $\mathrm{C} 1-\mathrm{S} 2$, as well as in the $\mathrm{Sn}-\mathrm{Cl}$ distances. Thus, the longer $\mathrm{Sn}-\mathrm{Cl} 1$ distance involves the Cl 1 atom that is approximately trans to S 1 as opposed to the shorter $\mathrm{Sn}-\mathrm{Cl} 2$ distance with Cl 2 opposite to the $\mathrm{Sn}-\mathrm{O}_{\text {carbonyl }}$ bond. While the $\mathrm{SnS}_{2} \mathrm{C}$ chelate ring is effectively planar, there is significant puckering in the five-membered ring, as seen in the magnitudes of the $\mathrm{Sn}-$ $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$ torsion angles of 24.6 (3) and $-32.7(2)^{\circ}$, respectively; these two rings are approximately orthogonal.

Molecules of (I) associate via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, forming a layer structure as shown in Fig. 2. A methylene and a methyl H atom of one ethyl group each forms such an interaction with two symmetry-related Cl atoms, displaced laterally, so that each molecule is involved in four such hydrogen-bonding interactions. Referring to Fig. 2, the C5$\mathrm{H} \cdots \mathrm{Cl} 1$ contacts, highlighted as blue dashed lines, link mol-

Received 30 June 2006
Accepted 1 July 2006

Figure 1
The molecular structure of (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The layer structure in (I) mediated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions, shown as dashed lines. Color code: Sn brown, Cl cyan, S yellow, O red, N blue, C grey and H green.
ecules into chains along the a-axis direction; $\mathrm{H} \cdots \mathrm{Cl} 2^{i}$ is $2.81 \AA, \mathrm{C} 5 \cdots \mathrm{Cl} 2^{\mathrm{i}}$ is 3.697 (3) \AA and the angle at H is $150 \AA$ [symmetry code: (i) $1+x, y, z$]. These chains are interconnected by $\mathrm{C} 4-\mathrm{H} \cdots \mathrm{Cl} 1^{\text {ii }}$ contacts, shown as orange dashed lines along the b-axis direction, so that $\mathrm{H} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$ is $2.80 \AA$, $\mathrm{C} 4 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$ is 3.654 (2) \AA and the angle at H is 145° [symmetry code: (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$]. These interactions result in the formation of interconnected 22-membered [$\mathrm{SnCl} \cdots \mathrm{HCNCSSnCl} \cdots \mathrm{HCCH} \cdots \mathrm{ClSnCl} \cdots \mathrm{HCCNCS}]$ rings. Successive layers are separated by hydrophobic interactions.

Experimental

The compound $\mathrm{Cl}_{3} \mathrm{Sn}\left(\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{COMe}\right)$ was prepared from SnCl_{2}, HCl and acetone according to a literature preparation (Burley et al., 1984). Solutions of $\mathrm{Cl}_{3} \mathrm{Sn}\left(\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{COMe}\right)(1.60 \mathrm{~g})$, in $\mathrm{Me}_{2} \mathrm{CO}$ $(20 \mathrm{ml})$, and $\mathrm{NaS}_{2} \mathrm{CNEt}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Aldrich, 1.13 g) in $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{ml})$ were mixed and heated at 313 K for 30 min . The reaction mixture was cooled, filtered and the filtrate rotary evaporated to give a solid residue. The residue was recrystallized from EtOH to yield colorless crystals of (I) (m.p. 472-444 K). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1665 ($\nu \mathrm{C}-\mathrm{O}$), 1440 ($\nu \mathrm{C}-\mathrm{N}$), 990 ($\nu \mathrm{C}-\mathrm{S}$).

Crystal data

$\left[\mathrm{SnCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}\right)\right]$
$M_{r}=437.00$
Monoclinic, $P 2_{1} / c$
$a=10.487(2) \AA$
$b=10.870(3) \AA$
$c=15.319(4) \AA$
$\beta=98.999(5)^{\circ}$
$V=1724.8$ (7) \AA^{3}

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.683 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.02 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.45 \times 0.25 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC12K/SATURN724 diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.665, T_{\text {max }}=1$
(expected range $=0.401-0.603)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0235 P)^{2}\right.} \\
&+1.6599 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

metal-organic papers

structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: SHELXL97.

The Welch Foundation is thanked for support of this research through a Fellowship to WBW.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.

Burley, J. W., Hope, P. \& Mack, A. G. (1984). J. Organomet. Chem. 277, 37-46.
Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.
Donoghue, N., Tiekink, E. R. T. \& Webster, L. (1993). Appl. Organomet. Chem. 7, 109-117
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Menezes, D. C., de Lima, G. M., Porto, A. O., Donnici, C. L., Ardisson, J. D., Doriguetto, A. C. \& Ellena, J. (2004). Polyhedron, 23, 2103-2109.
Rigaku (2005). CrystalClear User Manual, Rigaku/MSC Inc., The Woodlands, Texas, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tiekink, E. R. T. (1992). Main Group Met. Chem. 15, 161-186.

[^0]: © 2006 International Union of Crystallography All rights reserved

